
Sistemas Embutidos 2020/21

Concurrent Models of Computation 1

d cc][

CONCURRENT MODELS
OF COMPUTATION

Pedro Brandão, Sérgio Crisóstomo

Sistemas Embutidos 2020/21

d c
c]

[

References

■ Slides are from Edward A. Lee & Sanjit Seshia, UC Berkeley, EECS

149 Fall 2013

– Copyright © 2008-date, Edward A. Lee & Sanjit A. Seshia, All

rights reserved

■ Petri networks’ slides are from Reinhard von Hanxleden, Christian-

Albrechts-Universität zu Kiel

■ Time triggered slides are from Thomas A. Henzinger, IST Austria

SE 2020/21 - Concurrent Models of Comp. - pbrandao2

1

2

Sistemas Embutidos 2020/21

Concurrent Models of Computation 2

d cc][

DATAFLOW MODELS OF
COMPUTATION

SE 2020/21 - Concurrent Models of Comp. - pbrandao3

d c
c]

[

Simple Example: Spectrum Analysis

■ How do we keep the non-time critical path from interfering with the

time-critical path?

SE 2020/21 - Concurrent Models of Comp. - pbrandao4

Time critical path

Not time

critical path

3

4

Sistemas Embutidos 2020/21

Concurrent Models of Computation 3

d c
c]

[

A Solution with Threads

■ Create two threads:

• A has low priority

• B has high priority

■ Why?

■ How to implement the

communication between

threads?

SE 2020/21 - Concurrent Models of Comp. - pbrandao5

Time critical path

Thread A

Thread B

d c
c]

[

Dataflow Models

■ Buffered communication between concurrent components (actors).

■ Static scheduling: Assign to each thread a sequence of actor
invocations (firings) and repeat forever.

■ Dynamic scheduling: Each time dispatch() is called, determine which
actor can fire (or is firing) and choose one.

■ May need to implement interlocks in the buffers.

SE 2020/21 - Concurrent Models of Comp. - pbrandao6

Actor A
FIFO buffer

Actor B

5

6

Sistemas Embutidos 2020/21

Concurrent Models of Computation 4

d c
c]

[

Streams: The basis for Dataflow models

■ A stream is a signal 𝑥:ℕ → 𝑅 some set 𝑅.

■ There is not necessarily any relationship between 𝑥(n), an element in

a stream, and y n , an element in another stream.

■ Unlike discrete-time models or SR models

– Streams are not simultaneous

SE 2020/21 - Concurrent Models of Comp. - pbrandao7

d c
c]

[

Dataflow

■ Each signal has the form 𝑥:ℕ → 𝑅

■ The function F maps such signals into such signals.

■ The function f (the “firing” function) maps prefixes of these signals into prefixes of
the output

■ Operationally, the actor consumes some number of tokens to construct the output
signal(s) from the input signal(s)

■ If the number of tokens consumed and produced is a constant over all firings, then
the actor is called a synchronous dataflow (SDF) actor.

SE 2020/21 - Concurrent Models of Comp. - pbrandao8

Firing rules: the number of tokens

required to fire an actor.

7

8

Sistemas Embutidos 2020/21

Concurrent Models of Computation 5

d c
c]

[

Buffers for Dataflow

■ Unbounded buffers require memory allocation and de-allocation schemes.

■ Bounded size buffers can be realized as circular buffers or ring buffers, in
a statically allocated array.

– A read pointer r is an index into the array referring to the first empty
location. Increment this before each read.

– A fill count n (unsigned number) indicates nr of data items in buffer.

– The next location to write to is (r + n) modulo buffer length.

– The buffer is empty if n == 0

– The buffer is full if n == buffer length

– Can implement n as a semaphore, providing mutual exclusion for code
that changes n or r.

SE 2020/21 - Concurrent Models of Comp. - pbrandao9

d c
c]

[

Circular buffers

■ Indexes locate currently used data, current input data:

SE 2020/21 - Concurrent Models of Comp. - pbrandao10

d1

d2

d3

d4

time t1

use

input d5

d2

d3

d4

time t1+1

use

input

9

10

Sistemas Embutidos 2020/21

Concurrent Models of Computation 6

d c
c]

[

Abstracted Version of the Spectrum Example:
Non-preemptive scheduling

■ Suppose that C requires 8 data values from A to execute.

■ Suppose further that C takes much longer to execute than A or B.

Then a schedule might look like this:

SE 2020/21 - Concurrent Models of Comp. - pbrandao11

Assume infinitely repeated invocations,

triggered by availability of data at A.

This suffers

from jitter.

1 1

8

…schedule

d c
c]

[

Uniformly Timed Schedule

■ A preferable schedule would space invocations of A and B uniformly

in time, as in:

SE 2020/21 - Concurrent Models of Comp. - pbrandao12

…

minimum latency

11

12

Sistemas Embutidos 2020/21

Concurrent Models of Computation 7

d c
c]

[

Non-Concurrent Uniformly Timed Schedule

■ Notice that in this schedule, the rate at which A and B can be invoked

is limited by the execution time of C.

SE 2020/21 - Concurrent Models of Comp. - pbrandao13

No jitter, but utilization is poor.

d c
c]

[

Concurrent Uniformly Timed Schedule:
Pre-emptive schedule

■ With pre-emption, the rate at which A and B can be invoked is limited

only by total computation:

SE 2020/21 - Concurrent Models of Comp. - pbrandao14

…

…preemptions

thread 1:

thread 2:

high priority

low priority

13

14

Sistemas Embutidos 2020/21

Concurrent Models of Computation 8

d c
c]

[

Ignoring Initial Transients, Abstract to Periodic
Tasks

■ In steady-state, the execution follows a simple periodic pattern:

SE 2020/21 - Concurrent Models of Comp. - pbrandao15

…

…

thread 1:

thread 2:

Sample Time = 1 Sample Time = 1

Sample Time = 8

This follows the principles of

rate-monotonic scheduling

(RMS).

d c
c]

[

Requirement 1 for Determinacy: Periodicity

■ If the execution of C runs longer than expected, data determinacy requires
that thread 1 be delayed accordingly.

■ This can be accomplished with semaphore synchronization. But there are
alternatives:

– Throw an exception to indicate timing failure.

– “Anytime” computation: use incomplete results of C

SE 2020/21 - Concurrent Models of Comp. - pbrandao16

…

…

thread 1:

thread 2:
Sample Time: 1 Sample Time: 1

Sample Time: 8

interlock

15

16

Sistemas Embutidos 2020/21

Concurrent Models of Computation 9

d c
c]

[

Requirement 1 for Determinacy: Periodicity

■ If the execution of C runs shorter than expected, data determinacy

requires that thread 2 be delayed accordingly.

– That is, it must not start the next execution of C before the data is

available.

SE 2020/21 - Concurrent Models of Comp. - pbrandao17

…

…

thread 1:

thread 2:

interlock

Sample Time: 1 Sample Time: 1

Sample Time: 8

d c
c]

[

Semaphore Synchronization Required Exactly
Twice Per Major Period

■ Note that semaphore synchronization is not required if actor 1 runs

long because its thread has higher priority.

– Everything else is automatically delayed.

SE 2020/21 - Concurrent Models of Comp. - pbrandao18

…

…

thread 1:

thread 2:

Sample Time: 1 Sample Time: 1

Sample Time: 8

17

18

Sistemas Embutidos 2020/21

Concurrent Models of Computation 10

d c
c]

[

Simulink and Coder (The MathWorks)
■ Typical usage pattern:

– model the continuous dynamics of the physical plant

– model the discrete-time controller

– code generated for the discrete-time controller

SE 2020/21 - Concurrent Models of Comp. - pbrandao19

Discrete signals semantically are

piecewise constant. Discrete blocks

have periodic execution with a

specified “sample time.”

d c
c]

[

Explicit Buffering is required in Simulink

■ In Simulink, unlike dataflow, there is no buffering of data. To get the

effect of presenting to C 8 successive samples at once, we must

explicitly include a buffering actor that outputs an array.

SE 2020/21 - Concurrent Models of Comp. - pbrandao20

Sample Time: 1

Sample Time: 8

19

20

https://www.mathworks.com/products/simulink-coder.html

Sistemas Embutidos 2020/21

Concurrent Models of Computation 11

d c
c]

[

Requirement 2 for Determinacy: Data Integrity
During Execution

■ It is essential that input data remains stable during one complete

execution of C, something achieved in Simulink with a zero-order hold

(ZOH) block.

SE 2020/21 - Concurrent Models of Comp. - pbrandao21

thread 1:

thread 2:

Sample Time: 1

Sample Time: 8

d c
c]

[

In Dataflow, Interlocks and Built-in Buffering take
care of these dependencies

■ For dataflow, a one-time interlock ensures sufficient data at the input

of C:

SE 2020/21 - Concurrent Models of Comp. - pbrandao22

…

…first-time interlock

thread 1:

thread 2:

high priority

low priority

periodic interlocks

No ZOH

block is

required!

21

22

Sistemas Embutidos 2020/21

Concurrent Models of Computation 12

d c
c]

[

Consider a Low-Rate Actor Sending Data to a
High-Rate Actor

■ Note that data precedencies make it impossible to achieve uniform

timing for A and C with the periodic non-concurrent schedule

indicated above.

SE 2020/21 - Concurrent Models of Comp. - pbrandao23

Sample Time: 1 Sample Time: 4

sequential

schedule

d c
c]

[

Overlapped Iterations Can Solve This Problem

■ This solution takes advantage of the intrinsic buffering provided by
dataflow models.

■ For dataflow, this requires the initial interlock as before, and the same
periodic interlocks.

SE 2020/21 - Concurrent Models of Comp. - pbrandao24

produce/consume: 1 produce/consume: 4

thread 1:

thread 2:

23

24

Sistemas Embutidos 2020/21

Concurrent Models of Computation 13

d c
c]

[

Dataflow Models

■ Buffered communication between concurrent components (actors).

■ An actor can fire whenever it has enough data (tokens) in its input buffers.
It then produces some data on its output buffers.

■ In principle, buffers are unbounded. But for implementation on a computer,
we want them bounded (and as small as possible).

SE 2020/21 - Concurrent Models of Comp. - pbrandao25

Actor A
FIFO buffer

Actor B

d c
c]

[

Synchronous Dataflow (SDF)

■ If the number of tokens consumed and produced by the firing of an

actor is constant, then static analysis can tell us whether we can

schedule the firings to get a useful execution, and if so, then a finite

representation of a schedule for such an execution can be created.

SE 2020/21 - Concurrent Models of Comp. - pbrandao26

α

25

26

Sistemas Embutidos 2020/21

Concurrent Models of Computation 14

d c
c]

[

Balance Equations

■ Let qA, qB be the number of firings of actors A and B.

■ Let pα, cα be the number of tokens produced and consumed on a

connection α.

■ Then the system is in balance if for all connections C

qA ⋅ pα =qB ⋅ cα

■ where A produces tokens on α and B consumes them.

SE 2020/21 - Concurrent Models of Comp. - pbrandao27

d c
c]

[

Example

■ Consider this example, where actors and arcs are numbered:

■ The balance equations imply that actor C must fire twice as often as
the other two actors.

SE 2020/21 - Concurrent Models of Comp. - pbrandao28

C

B

A α β

γ

27

28

Sistemas Embutidos 2020/21

Concurrent Models of Computation 15

d c
c]

[

Compactly Representing the Balance Equations

SE 2020/21 - Concurrent Models of Comp. - pbrandao29

















−

−

−

=

102

120

011

















=

3

2

1

q

q

q

q

Actor A

Connector α balance equations

firing vector

production/consumption matrix

A

B

C
α β

γ

Γ𝑞 = 0 =
0
0
0

d c
c]

[

Recalling…

■ What is the production/consumption matrix in this case?

SE 2020/21 - Concurrent Models of Comp. - pbrandao30

1 1

8








 −

−
=

0

1

8

0

1

1

29

30

Sistemas Embutidos 2020/21

Concurrent Models of Computation 16

d c
c]

[

Example

■ A solution to the balance equations:

SE 2020/21 - Concurrent Models of Comp. - pbrandao31

















=

2

1

1

q

















−

−

−

=

102

120

011

This tells us that actor C must fire twice as often as actors 1 and 2.

Γ𝑞 = 0

C

B

A
α β

γ

d c
c]

[

Example

■ But there are many solutions to the balance equations:

■ For “well-behaved” models, there is a unique least positive integer

solution.

SE 2020/21 - Concurrent Models of Comp. - pbrandao32

















=

2

1

1

q

















=

0

0

0

q

















=

4

2

2

q

















−

−

−

=

2

1

1

q

















=







2

q

C

B

A
α β

γ

31

32

Sistemas Embutidos 2020/21

Concurrent Models of Computation 17

d c
c]

[

Least Positive Integer Solution to the Balance
Equations

■ If pα, cα , nr of tokens produced and consumed on connection α, are
non-negative integers, then the balance equation,

qA ⋅ pα = qB ⋅ cα

■ implies:

– qA is rational if and only if qB is rational.

– qA is positive if and only if qB is positive.

■ Consequence: Within any connected component, if there is any non-
zero solution to the balance equations, then there is a unique least
positive integer solution.

SE 2020/21 - Concurrent Models of Comp. - pbrandao33

d c
c]

[

Rank of a Matrix

■ The rank of a matrix Γ is the number of linearly independent rows or
columns. The equation

Γ𝑞 = 0

■ is forming a linear combination of the columns of Γ.

– Such a linear combination for 𝑞 ≠ 0 can only yield the zero vector if the
columns are linearly dependent.

■ If all columns/rows are independent only 𝑞 = 0 is a solution

■ If Γ has 𝑎 columns and 𝑏 rows, the rank cannot exceed min(𝑎, 𝑏).

■ If the columns or rows of Γ are re-ordered, the resulting matrix has the
same rank as Γ.

SE 2020/21 - Concurrent Models of Comp. - pbrandao34

33

34

Sistemas Embutidos 2020/21

Concurrent Models of Computation 18

d c
c]

[

Rank of the Production/Consumption Matrix

1. Let 𝑎 be the number of actors in a connected graph. Then the rank of
the production/consumption matrix Γ ≤ 𝑎.

– Why?

2. If the model is a spanning tree (meaning that there are barely
enough connections to make it connected) then Γ has 𝑎 columns
(actors) and 𝑎 − 1 rows (connections).

3. Theorem [Lee-Messerschmitt’87]: Its rank is 𝑎 − 1.

4. Corollary: the rank of any production/consumption matrix of a
connected graph is either 𝑎 or 𝑎 − 1.

– Why?

SE 2020/21 - Concurrent Models of Comp. - pbrandao35

d c
c]

[

Max rank is 𝑎 or 𝑎 − 1

■ Grid graph (prod/consumption graph)

■ In blue: sub graph as a spanning tree

■ Rank of spanning tree sub graph is rank 𝑎 − 1

■ Rank of full graph is at most 𝑎 from 1st bullet

SE 2020/21 - Concurrent Models of Comp. - pbrandao36

Image: "4x4 grid spanning tree" by David Eppstein - Own work.

Licensed under Public domain via Wikimedia

35

36

Sistemas Embutidos 2020/21

Concurrent Models of Computation 19

d c
c]

[

Consistent Models

■ Let 𝑎 be the number of actors in a connected model. The model is

consistent if Γ has rank 𝑎 − 1.

■ If the rank is 𝑎, then the balance equations have only a trivial solution

(zero firings).

■ When Γ has rank 𝑎 − 1, then the balance equations always have a

non-trivial solution.

SE 2020/21 - Concurrent Models of Comp. - pbrandao37

d c
c]

[

Example of an Inconsistent Model:
No Non-Trivial Solution to the Balance Equations

■ This production/consumption matrix has rank 3, so there are no
nontrivial solutions to the balance equations.

■ Note that this model can execute forever, but it requires unbounded
memory.

SE 2020/21 - Concurrent Models of Comp. - pbrandao38

Γ =
1 −1 0
0 1 −1
2 0 −1

α β

γ

C

B

A

37

38

Sistemas Embutidos 2020/21

Concurrent Models of Computation 20

d c
c]

[

Necessary and sufficient conditions

■ Consistency is a necessary condition to have a (bounded-memory)

infinite execution.

■ Is it sufficient?

– No. Could get deadlock

SE 2020/21 - Concurrent Models of Comp. - pbrandao39

d c
c]

[

Deadlock 1

■ Is this diagram consistent?

SE 2020/21 - Concurrent Models of Comp. - pbrandao40

A B

1 1

11

Γ =
1 −1
−1 1

𝑏 =
1
1

39

40

Sistemas Embutidos 2020/21

Concurrent Models of Computation 21

d c
c]

[

Deadlock 2

■ Some dataflow models cannot execute forever. In the model below,

the feedback loop injects initial tokens, but not enough for the model

to execute.

SE 2020/21 - Concurrent Models of Comp. - pbrandao41

d c
c]

[

SDF: from static analysis to scheduling

■ Given: SDF diagram

■ Find: a bounded-buffer schedule, if it exists

■ Step 0: check whether diagram is consistent. If not, then no bounded-buffer
schedule exists.

■ Step 1: find an integer solution to Γ𝑞 = 0.

■ Step 2: “decompose” the solution 𝑞 into a schedule, making sure buffers
never become negative.

SE 2020/21 - Concurrent Models of Comp. - pbrandao42

41

42

Sistemas Embutidos 2020/21

Concurrent Models of Computation 22

d c
c]

[

Step 2: “decomposing” the firing vector

■ Example 1:

SE 2018/19 - Concurrent Models of Comp. - pbrandao43

















=

2

1

1

q

















=

0

0

0

b

Fire A

















=

2

1

0

q

















=

2

0

1

b

Fire B

















=

2

0

0

q

















=

2

2

0

b

Fire C

















=

1

0

0

q

















=

1

1

0

b

Fire C

















=

0

0

0

q

















=

0

0

0

b

Schedule = (A;B;C;C)
α β

γ

C

B

A

d c
c]

[

Step 2: “decomposing” the firing vector

■ Example 2:

SE 2020/21 - Concurrent Models of Comp. - pbrandao44

What happens if we try to run

the previous procedure

on this example?

A B

1 1

11

So, we have both necessary

and sufficient conditions for

scheduling SDF graphs.

Γ =
1 −1
−1 1

𝑏 =
1
1

43

44

Sistemas Embutidos 2020/21

Concurrent Models of Computation 23

d c
c]

[

If More Than One Actor is Fireable

■ A Key Question: If More Than One Actor is Fireable in Step 2, How

do I Select One?

■ Optimization criteria that might be applied:

– Minimize buffer sizes.

– Minimize the number of actor activations.

– Minimize the size of the representation of the schedule

(code size).

SE 2020/21 - Concurrent Models of Comp. - pbrandao45

d c
c]

[

Dynamic Dataflow components

■ Select: Based on the input on 

(True or False) the input from 

(T or F respectively) will be

selected to the output 

■ Switch: Based on the input on 

(True or False) the input from 

will be switched to the output 

(T or F respectively).

SE 2020/21 - Concurrent Models of Comp. - pbrandao46

45

46

Sistemas Embutidos 2020/21

Concurrent Models of Computation 24

d c
c]

[

Dynamic Dataflow

■ Imperative equivalent:

while (true) {

x = f1();

b = f7();

if (b) {

y = f3(x);

} else {

y = f4(x);

}

f6(y);

}

SE 2020/21 - Concurrent Models of Comp. - pbrandao47

The if-then-else model is not SDF. But we
can clearly give a bounded quasi-static
schedule for it:

What consumption rate?

What production rate?

guard

C

BA

D

E F

G

x

b

y

(A, G, B, b?C, !b?D, E, F)

d c
c]

[

Facts about (general) dynamic dataflow

■ Whether there exists a schedule that does not deadlock is
undecidable.

■ Whether there exists a schedule that executes forever with bounded
memory is undecidable.

■ Undecidable means that there is no algorithm that can answer the
question in finite time for all finite models.

■ Note that for Synchronous Data Flow deadlock and bounded mem
are decidable

SE 2020/21 - Concurrent Models of Comp. - pbrandao48

47

48

Sistemas Embutidos 2020/21

Concurrent Models of Computation 25

d c
c]

[

Structured Data Flows

■ Higher-order actor called Conditional.

– A higher-order actor is an actor that has one or more models as

parameters.

■ When Conditional fires, it consumes one token from each input port

and produces one token on its output port ➔ SDF actor

■ Action performed is dependent on token at the lower input port.

– True → actor C fires

– False → actor D fires.

SE 2020/21 - Concurrent Models of Comp. - pbrandao49

d c
c]

[

Structured Data Flows

■ Control constructs are nested hierarchically

■ Overall model is still an SDF model.

■ Analysable for deadlock and bounded buffers.

SE 2020/21 - Concurrent Models of Comp. - pbrandao50

49

50

Sistemas Embutidos 2020/21

Concurrent Models of Computation 26

d c
c]

[

Petri Nets

■ A variant of dataflow

■ Places can contain arbitrary number of
tokens

■ Transitions are enabled if all places
connected to it contain at least one
token

■ Enabled transitions can fire, consuming
one token from each input and putting
one token on each output

■ State of the network, the marking, is
the number of tokens on each place

SE 2020/21 - Concurrent Models of Comp. - pbrandao51

d c
c]

[

Petri Nets

■ If no place provides input to more

than one transition, then the

network is deterministic

■ Unlike dataflow buffers, places do

not preserve an ordering of tokens

■ Petri nets with a finite number of

markings are equivalent to FSMs

SE 2020/21 - Concurrent Models of Comp. - pbrandao52

51

52

Sistemas Embutidos 2020/21

Concurrent Models of Computation 27

d c
c]

[

Petri Net Example – Mutual Exclusion

■ Programs A and B both have a critical section (a2 and b1)

■ Only one of the programs may be in its critical section at any time

SE 2020/21 - Concurrent Models of Comp. - pbrandao53

d cc][

TIMED MODELS OF
COMPUTATION

SE 2020/21 - Concurrent Models of Comp. - pbrandao

53

54

Sistemas Embutidos 2020/21

Concurrent Models of Computation 28

d c
c]

[

Time-Triggered Models of Computation

■ Periodically triggering distributed computations according to a

distributed clock

■ Time-triggered MoC is similar to Sync-Reactive ➔ there is a global

clock that coordinates the computation

■ But computations take time instead of being simultaneous and

instantaneous.

– A logical execution time (LET)

– Outputs are not visible to other computations until the next tick of

the global clock

SE 2020/21 - Concurrent Models of Comp. - pbrandao55

d c
c]

[

Time-Triggered Models

■ Between ticks, there is no interaction between the computations

➔concurrency difficulties such as race conditions do not exist

■ Computations are not (logically) instantaneous ➔ there are no

difficulties with feedback, and all models are constructive

SE 2020/21 - Concurrent Models of Comp. - pbrandao56

A: LET=5 ms B: LET=10 ms

55

56

Sistemas Embutidos 2020/21

Concurrent Models of Computation 29

d c
c]

[

Software Task

read sensor

input at time t

write actuator output

at time t+d, for

specified d

The LET (Logical Execution Time) Programming Model

SE 2020/21 - Concurrent Models of Comp. - pbrandao57

d c
c]

[

The LET (Logical Execution Time) Programming Model

time t time t+d

real execution

on CPU buffer output

SE 2020/21 - Concurrent Models of Comp. - pbrandao58

57

58

Sistemas Embutidos 2020/21

Concurrent Models of Computation 30

d c
c]

[

Discrete Event Systems

■ Been used for decades to build simulations (e.g.: ns3)

■ Events are endowed with a time stamp

– a value in some model of time

■ 2 distinct time stamps must be comparable

– Either equal or one is earlier than the other

■ DE model: a network of actors where each actor:

– reacts to input events in time stamp order

– produces output events in time stamp order.

SE 2020/21 - Concurrent Models of Comp. - pbrandao59

d c
c]

[

Discrete Event Systems

■ Have an event queue

– Events sorted by time stamp

■ Each actor in the network is interrogated for any initial events it wishes to
place on the queue

■ Events have destinations and (of course) a time stamp

■ Execution continues selecting the earliest event in queue and determining
which actor should receive it

■ Actor fires/reacts

■ Reaction can:

– produce output events

– events that simply request a later firing of the same actor

SE 2020/21 - Concurrent Models of Comp. - pbrandao60

59

60

http://www.nsnam.org/

Sistemas Embutidos 2020/21

Concurrent Models of Computation 31

d c
c]

[

Continuous Time

■ Recall: helicopter feedback control system

■ Actor compositions under a continuous-time model of computation.

■ However: cannot strictly be executed on a digital computer.

– A digital computer cannot directly deal with the time continuum

SE 2020/21 - Concurrent Models of Comp. - pbrandao61

d c
c]

[

Continuous time - Approximation

■ Approximate execution of a continuous-time model is accomplished by

a solver

– constructs a numerical approximation to the solution of an Ordinary

Differential Equation

SE 2020/21 - Concurrent Models of Comp. - pbrandao62

61

62

Sistemas Embutidos 2020/21

Concurrent Models of Computation 32

d c
c]

[

Continuous time model

■ Network of actors, each of which is a cascade composition of a

simple memory less computation actor and a state machine

■ Actor reactions are simultaneous and instantaneous.

■ The times of the reactions are determined by a solver.

■ Mechanisms required to achieve a continuous-time model of

computation are not much different from SR and DE.

SE 2020/21 - Concurrent Models of Comp. - pbrandao63

d c
c]

[

Summary

■ Data flow models of computation

– Synchronous dataflow

– Dynamic dataflow

– Structured Dataflow

– Petri Nets

■ Timed Models of Computation

– Time Triggered

– Discrete Event

– Continuous Time

SE 2020/21 - Concurrent Models of Comp. - pbrandao64

63

64

