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STRUCTURE OF MODELS
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Recall: Actor Model for State Machines

■ Expose inputs and outputs, enabling composition:
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Recall: Actor Model of Continuous-Time Systems

■ A system is a function that 
accepts an input signal and 
yields an output signal.

■ The domain and range of the 
system function are sets of 
signals, which themselves are 
functions.

■ Parameters may affect the 
definition of the function S.
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𝑆: 𝑋 → 𝑌
𝑋 = 𝑌 = ℝ → ℝ

𝑥: ℝ → ℝ, 𝑦:ℝ → ℝ
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Example: Actor model of the helicopter

■ Input is the net torque of the tail rotor and the top rotor. Output is the 

angular velocity around the y axis.
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Parameters of the model 

are shown in the box. The 

input and output relation is 

given by the equation.

ሶ𝜃𝑦 t = ሶ𝜃𝑦 0 +
1

𝐼𝑦𝑦
න
0

𝑡

𝑇𝑦 𝜏 𝑑𝜏
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Recall: Composition of actor models
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𝑦′ = ሶ𝜃𝑦𝑥 = 𝑇𝑦

𝑦 = 𝑥′
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Models of Computation (MoC)

■ A model of computation assigns semantics (meaning) to the syntax 

defined in the actor model.

■ The MoC gives operational rules for executing a model. These rules 

determine when actors perform internal computation, update their 

internal state, and perform external communication. 

■ An MoC also defines the nature of communication between 

components (e.g., buffered I/O).
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Model of Computation (MoC): Continuous Time 
(CT)

■ Structure of a signal:

𝑠: 𝑇 → 𝑅

■ Where in our helicopter model: 𝑇 = 𝑅 = ℝ

– But signals can haver a rather different form
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Discrete-Time (DT) Actor Models

■ Discrete time signals have the form:

𝑥: ℤ → 𝑅

■ For some data type 𝑅, where ℤ is the set of integers

■ An index n ∈ ℤ is typically associated with a time value nT, where

T ∈ ℝ is the sampling interval

■ Discrete-time helicopter model looks the same:
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Time-Triggered Reactions of FSMs: Discrete-Time 
MoC
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Mixed Signal Models

■ A more reasonable model of a discrete helicopter controller would be a 
mixed-signal model:

■ Here, the signals inside the blue area are continuous-time signals, and the 
ones outside are discrete-time signals.
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“absent” values

■ To jointly model discrete and continuous-time signals in the same MoC, 

use the notion of “absent” values

■ Let a continuous-time (CT) signal be a function of form

𝑥:ℝ → ℝ ∪ 𝜀

■ Where 𝜀 denotes “absent”. A discrete-time signal is now modelled as 

a CT signal whose value is 𝜀 except at times t ∈ ℝ where t = nT, for 

some n ∈ ℤ

■ We can also model discrete-event (DE) systems, where the discrete 

events need not be regularly spaced.
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Event-triggered composition of state machines uses a discrete-event MoC. 
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Example

■ Consider a pure signal s that is a discrete signal given by:

𝑠 𝑡 = ቊ
𝑝𝑟𝑒𝑠𝑒𝑛𝑡, if 𝑡 is a multiple of 𝑃
𝑎𝑏𝑠𝑒𝑛𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– for all 𝑡 ∈ ℝ and some 𝑃 ∈ ℝ. 

■ signal is a clock signal with period 𝑃

– Communication events occur every 𝑃 time units.
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Other way to do things

■ Imperative, Threads, Declarative physical models, Constraints, …
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Modelica model of an 

industrial robot. Modelica

uses Spice-like models. 

d c
c]

[

model Resistor

extends OnePort;

parameter Real R;

equation

v = R*i;

end Resistor;

Example of Modelica: Industrial Robots (from 
Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.fullRobot)

From Modelica Overview
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SYNCHRONOUS-
REACTIVE MODELS
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Concurrent Composition: Alternatives to Threads

■ Threads yield incomprehensible behaviours.

■ Composition of State Machines:

– Side-by-side composition

– Cascade composition

– Feedback composition

■ We will begin with synchronous composition.
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(States, Inputs, Outputs, update, initialState)

Side-by-Side Composition

■ Synchronous composition: the machines react simultaneously and 

instantaneously.
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(StatesA, InputsA, OutputsA, updateA, initialStateA)

(StatesB, InputsB, OutputsB, updateB, initialStateB)
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Cascade Composition

■ Synchronous composition: the machines react simultaneously and 

instantaneously, despite the apparent causal relationship!
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(States, Inputs, Outputs, update, initialState)

(StatesA, InputsA, OutputsA, updateA, initialStateA)

(StatesB, InputsB, OutputsB, updateB, initialStateB)
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Synchronous Composition:
Reactions are Simultaneous and Instantaneous

■ Consider a cascade composition as follows:
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Synchronous Composition:
Reactions are Simultaneous and Instantaneous

■ In this model, you must not think of 

machine A as reacting before 

machine B. If it did, the unreachable 

states would not be unreachable.
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unreachable

s1, s3 

a/c

s2, s4 

true/

¬ a/

s1, s4 

a /

s2, s3

¬ a/

true/

Input: a: pure

Output: c: pure

a c

𝑆𝐶 = 𝑆𝐴 × 𝑆𝐵
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Feedback Composition

Turns out everything can be viewed as feedback composition…
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(States, Inputs, Outputs, update, initialState)

(StatesA, InputsA, OutputsA, updateA, initialStateA)

InputsA2

InputsA1
OutputsA1

OutputsA2

𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝐴2 ⊏ 𝐼𝑛𝑝𝑢𝑡𝑠𝐴2

d c
c]

[

Recall: Feedback Composition
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Angular velocity appears on 

both sides. The semantics 

(meaning) of the model is 

the solution to this equation.

ሶ𝜃𝑦 𝑡 = ሶ𝜃𝑦 0 +
1

𝐼𝑦𝑦
න
0

𝑡

𝑇𝑦 𝜏 𝑑𝜏

= ሶ𝜃𝑦 0 +
𝐾

𝐼𝑦𝑦
0
𝑡
Ψ 𝜏 − ሶ𝜃𝑦 𝜏 𝑑𝜏
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Observation: Any Composition is a Feedback 
Composition
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The behaviour of the system is 

a “fixed point.”

s  S N

If every actor is a function, then the 

semantics of the overall system is the 

least s  SN such that F(s) = s
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Fixed Point Semantics
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s  S N

Consider an 

interconnection of actors

Abstract actors Abstract signals

Reorganize We seek an s  SN that 

satisfies F(s) = s. 

Such an s is called a fixed 

point.

We would like the fixed point 

to exist and be unique. And 

we would like a constructive 

procedure to find it.

It is the behaviour of the 

system.
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Data Types

■ As with any connection, we require compatible data types:

𝑉𝑦 ⊆ 𝑉𝑥

■ Then the signal on the feedback loop is a function

𝑠: ℕ → 𝑉𝑦⋃ 𝑎𝑏𝑠𝑒𝑛𝑡

■ Then we seek 𝑠 such that

𝐹 𝑠 = 𝑠

■ Where 𝐹 is the actor function, which for determinate systems has 

form

𝐹: (ℕ → 𝑉𝑥 ⋃ 𝑎𝑏𝑠𝑒𝑛𝑡 ) → (ℕ → 𝑉𝑦 ⋃ 𝑎𝑏𝑠𝑒𝑛𝑡 )
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x y

s
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Firing Functions
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x y

s

■ With synchronous composition of determinate state machines, we can 

break this down by reaction. At the n-th reaction (can be a tick of a 

clock), there is a (state-dependent) function

𝑓(𝑛): 𝑉𝑥 ⋃ 𝑎𝑏𝑠𝑒𝑛𝑡 → 𝑉𝑦 ⋃ 𝑎𝑏𝑠𝑒𝑛𝑡

■ Such that

𝑠 𝑛 = (𝑓 𝑛 )(𝑠 𝑛 )

■ This too is a fixed point
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Well-Formed Feedback

■ At the nth reaction we seek 𝑠 𝑛 ∈ 𝑉𝑦 ∪ 𝑎𝑏𝑠𝑒𝑛𝑡 such that 

𝑠 𝑛 = 𝑓 𝑛 𝑠 𝑛

■ There are two potential problems:

1. It does not exist

2. It is not unique

■ In either case, the system is ill formed. 

– Otherwise, it is well formed

■ if a state is not reachable, it is irrelevant to determining whether ill or 

well formed
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Well-Formed Example

■ In state s1, we get the unique fixed point s n = 𝑎𝑏𝑠𝑒𝑛𝑡

■ In state s2, we get the unique fixed point s n = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

■ Therefore, s alternates between absent and present.

SE 2020/21 - Concurrent Models of Comp. - pbrandao30

29

30



Sistemas Embutidos 2020/21

Concurrent Models of Computation 16

d c
c]

[

Ill-Formed Example 1 (Existence)

■ In state s1, we get the unique s n = 𝑎𝑏𝑠𝑒𝑛𝑡

■ In state s2, there is no fixed point

■ Since state s2 is reachable, this composition is ill formed.
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Ill-Formed Example 2 (Uniqueness)

■ In s1, both s n = 𝑎𝑏𝑠𝑒𝑛𝑡 and s n = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 are fixed points 

■ In state s2, we get the unique s n = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

■ Since state s1 is reachable, this composition is ill formed.
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Constructive Semantics: Single Signal

1. Start with s(n) unknown.

2. Determine as much as you can about fi(s(n)), where fi is the firing 

function in state i. 

3. Repeat step 2 until all values in s(n):

– become known (whether they are present and what their values are), 

or

– until no more progress can be made.

4. If unknown values remain, then reject the model.
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A state machine for which the procedure works 

in all reachable states is said to be

constructive
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Non-Constructive Well-Formed State Machine

■ In state s1, if the input is unknown, we cannot immediately tell what 

the output will be. We must try all the possible values for the input to 

determine that in fact s n = 𝑎𝑏𝑠𝑒𝑛𝑡 for all n.
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Constructive Well-Formed State Machine

■ In state s1, the machine may not produce an output. Therefore, we 

know the output is absent, even though the input is unknown.

■ In state s2 , the machine must produce an output, so the output is 

present.
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Must / May Analysis

■ In state s1, we can immediately determine that the machine may not 

produce an output ➔output is absent, even though the input is unknown.

– If the output is absent, ➔ the input is absent → procedure concludes.

■ In state s2, we can immediately determine that the machine must produce 

an output, ➔ output is present.
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Constructive Semantics: Multiple Signals

1. Start with s1(n), s2(n),…, sN(n), unknown.

2. Determine as much as you can about fi(s1(n), s2(n),…, sN(n)), where 

fi is the firing function in state i. 

3. Repeat step 2 until all values in s1(n), s2(n),…, sN(n) become known 

(whether they are present and what their values are), or until no 

more progress can be made.

4. If unknown values remain, then reject the model.
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A state machine for which the procedure works 

in all reachable states is said to be

constructive
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Constructive Semantics: Multiple Actors

■ Procedure is the same.
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Constructive Semantics: Arbitrary Structure

■ Procedure is the same.

■ A state machine language with constructive semantics will reject all 

compositions that in any iteration fail to make all signals known.

■ Such a language rejects some well-formed compositions.
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Some conclusions:

■ The emphasis of synchronous composition, in contrast with threads, is 

on determinate and analysable concurrency.

■ Although there are subtleties with synchronous programs,  all 

constructive synchronous programs have a unique and well-defined 

meaning.

■ Automated tools can systematically explore all possible behaviours. 

This is not possible in general with threads.
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Summary

■ Structure of models

– Models of computation

■ Synchronous-reactive models

– Fixed point semantics
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