
Sistemas Embutidos 2020/21

Concurrent Models of Computation 1

d cc][

CONCURRENT MODELS
OF COMPUTATION

Pedro Brandão, Sérgio Crisóstomo

Sistemas Embutidos 2020/21

d c
c]

[

References

■ Slides are from Edward A. Lee & Sanjit Seshia, UC Berkeley, EECS

149 Fall 2013

– Copyright © 2008-date, Edward A. Lee & Sanjit A. Seshia, All

rights reserved

■ Petri networks’ slides are from Reinhard von Hanxleden, Christian-

Albrechts-Universität zu Kiel

■ Time triggered slides are from Thomas A. Henzinger, IST Austria

SE 2020/21 - Concurrent Models of Comp. - pbrandao2

1

2

Sistemas Embutidos 2020/21

Concurrent Models of Computation 2

d cc][

STRUCTURE OF MODELS

SE 2020/21 - Concurrent Models of Comp. - pbrandao3

d c
c]

[

Recall: Actor Model for State Machines

■ Expose inputs and outputs, enabling composition:

SE 2020/21 - Concurrent Models of Comp. - pbrandao4

3

4

Sistemas Embutidos 2020/21

Concurrent Models of Computation 3

d c
c]

[

Recall: Actor Model of Continuous-Time Systems

■ A system is a function that
accepts an input signal and
yields an output signal.

■ The domain and range of the
system function are sets of
signals, which themselves are
functions.

■ Parameters may affect the
definition of the function S.

SE 2020/21 - Concurrent Models of Comp. - pbrandao5

𝑆: 𝑋 → 𝑌
𝑋 = 𝑌 = ℝ → ℝ

𝑥: ℝ → ℝ, 𝑦:ℝ → ℝ

d c
c]

[

Example: Actor model of the helicopter

■ Input is the net torque of the tail rotor and the top rotor. Output is the

angular velocity around the y axis.

SE 2020/21 - Concurrent Models of Comp. - pbrandao6

Parameters of the model

are shown in the box. The

input and output relation is

given by the equation.

ሶ𝜃𝑦 t = ሶ𝜃𝑦 0 +
1

𝐼𝑦𝑦
න
0

𝑡

𝑇𝑦 𝜏 𝑑𝜏

5

6

Sistemas Embutidos 2020/21

Concurrent Models of Computation 4

d c
c]

[

Recall: Composition of actor models

SE 2020/21 - Concurrent Models of Comp. - pbrandao7

𝑦′ = ሶ𝜃𝑦𝑥 = 𝑇𝑦

𝑦 = 𝑥′

d c
c]

[

Models of Computation (MoC)

■ A model of computation assigns semantics (meaning) to the syntax

defined in the actor model.

■ The MoC gives operational rules for executing a model. These rules

determine when actors perform internal computation, update their

internal state, and perform external communication.

■ An MoC also defines the nature of communication between

components (e.g., buffered I/O).

SE 2020/21 - Concurrent Models of Comp. - pbrandao8

7

8

Sistemas Embutidos 2020/21

Concurrent Models of Computation 5

d c
c]

[

Model of Computation (MoC): Continuous Time
(CT)

■ Structure of a signal:

𝑠: 𝑇 → 𝑅

■ Where in our helicopter model: 𝑇 = 𝑅 = ℝ

– But signals can haver a rather different form

SE 2020/21 - Concurrent Models of Comp. - pbrandao9

d c
c]

[

Discrete-Time (DT) Actor Models

■ Discrete time signals have the form:

𝑥: ℤ → 𝑅

■ For some data type 𝑅, where ℤ is the set of integers

■ An index n ∈ ℤ is typically associated with a time value nT, where

T ∈ ℝ is the sampling interval

■ Discrete-time helicopter model looks the same:

SE 2020/21 - Concurrent Models of Comp. - pbrandao10

9

10

Sistemas Embutidos 2020/21

Concurrent Models of Computation 6

d c
c]

[

Time-Triggered Reactions of FSMs: Discrete-Time
MoC

SE 2020/21 - Concurrent Models of Comp. - pbrandao11

sigG

sigY

sigR

sigR
pedR

pedG

pedestrian

d c
c]

[

Mixed Signal Models

■ A more reasonable model of a discrete helicopter controller would be a
mixed-signal model:

■ Here, the signals inside the blue area are continuous-time signals, and the
ones outside are discrete-time signals.

SE 2020/21 - Concurrent Models of Comp. - pbrandao12

11

12

Sistemas Embutidos 2020/21

Concurrent Models of Computation 7

d c
c]

[

“absent” values

■ To jointly model discrete and continuous-time signals in the same MoC,

use the notion of “absent” values

■ Let a continuous-time (CT) signal be a function of form

𝑥:ℝ → ℝ ∪ 𝜀

■ Where 𝜀 denotes “absent”. A discrete-time signal is now modelled as

a CT signal whose value is 𝜀 except at times t ∈ ℝ where t = nT, for

some n ∈ ℤ

■ We can also model discrete-event (DE) systems, where the discrete

events need not be regularly spaced.

SE 2020/21 - Concurrent Models of Comp. - pbrandao

Event-triggered composition of state machines uses a discrete-event MoC.

13

d c
c]

[

Example

■ Consider a pure signal s that is a discrete signal given by:

𝑠 𝑡 = ቊ
𝑝𝑟𝑒𝑠𝑒𝑛𝑡, if 𝑡 is a multiple of 𝑃
𝑎𝑏𝑠𝑒𝑛𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– for all 𝑡 ∈ ℝ and some 𝑃 ∈ ℝ.

■ signal is a clock signal with period 𝑃

– Communication events occur every 𝑃 time units.

SE 2020/21 - Concurrent Models of Comp. - pbrandao14

13

14

Sistemas Embutidos 2020/21

Concurrent Models of Computation 8

d c
c]

[

Other way to do things

■ Imperative, Threads, Declarative physical models, Constraints, …

SE 2020/21 - Concurrent Models of Comp. - pbrandao15

Modelica model of an

industrial robot. Modelica

uses Spice-like models.

d c
c]

[

model Resistor

extends OnePort;

parameter Real R;

equation

v = R*i;

end Resistor;

Example of Modelica: Industrial Robots (from
Modelica.Mechanics.MultiBody.Examples.Systems.RobotR3.fullRobot)

From Modelica Overview

SE 2020/21 - Concurrent Models of Comp. - pbrandao16

15

16

https://modelica.org/
https://modelica.org/education/educational-material/lecture-material/english/ModelicaOverview.ppt

Sistemas Embutidos 2020/21

Concurrent Models of Computation 9

d cc][

SYNCHRONOUS-
REACTIVE MODELS

SE 2020/21 - Concurrent Models of Comp. - pbrandao17

d c
c]

[

Concurrent Composition: Alternatives to Threads

■ Threads yield incomprehensible behaviours.

■ Composition of State Machines:

– Side-by-side composition

– Cascade composition

– Feedback composition

■ We will begin with synchronous composition.

SE 2020/21 - Concurrent Models of Comp. - pbrandao18

17

18

Sistemas Embutidos 2020/21

Concurrent Models of Computation 10

d c
c]

[

(States, Inputs, Outputs, update, initialState)

Side-by-Side Composition

■ Synchronous composition: the machines react simultaneously and

instantaneously.

SE 2020/21 - Concurrent Models of Comp. - pbrandao19

(StatesA, InputsA, OutputsA, updateA, initialStateA)

(StatesB, InputsB, OutputsB, updateB, initialStateB)

d c
c]

[

Cascade Composition

■ Synchronous composition: the machines react simultaneously and

instantaneously, despite the apparent causal relationship!

SE 2020/21 - Concurrent Models of Comp. - pbrandao20

(States, Inputs, Outputs, update, initialState)

(StatesA, InputsA, OutputsA, updateA, initialStateA)

(StatesB, InputsB, OutputsB, updateB, initialStateB)

19

20

Sistemas Embutidos 2020/21

Concurrent Models of Computation 11

d c
c]

[

Synchronous Composition:
Reactions are Simultaneous and Instantaneous

■ Consider a cascade composition as follows:

SE 2020/21 - Concurrent Models of Comp. - pbrandao21

d c
c]

[

Synchronous Composition:
Reactions are Simultaneous and Instantaneous

■ In this model, you must not think of

machine A as reacting before

machine B. If it did, the unreachable

states would not be unreachable.

SE 2020/21 - Concurrent Models of Comp. - pbrandao22

unreachable

s1, s3

a/c

s2, s4

true/

¬ a/

s1, s4

a /

s2, s3

¬ a/

true/

Input: a: pure

Output: c: pure

a c

𝑆𝐶 = 𝑆𝐴 × 𝑆𝐵

21

22

Sistemas Embutidos 2020/21

Concurrent Models of Computation 12

d c
c]

[

Feedback Composition

Turns out everything can be viewed as feedback composition…

SE 2020/21 - Concurrent Models of Comp. - pbrandao23

(States, Inputs, Outputs, update, initialState)

(StatesA, InputsA, OutputsA, updateA, initialStateA)

InputsA2

InputsA1
OutputsA1

OutputsA2

𝑂𝑢𝑡𝑝𝑢𝑡𝑠𝐴2 ⊏ 𝐼𝑛𝑝𝑢𝑡𝑠𝐴2

d c
c]

[

Recall: Feedback Composition

SE 2020/21 - Concurrent Models of Comp. - pbrandao24

Angular velocity appears on

both sides. The semantics

(meaning) of the model is

the solution to this equation.

ሶ𝜃𝑦 𝑡 = ሶ𝜃𝑦 0 +
1

𝐼𝑦𝑦
න
0

𝑡

𝑇𝑦 𝜏 𝑑𝜏

= ሶ𝜃𝑦 0 +
𝐾

𝐼𝑦𝑦
0
𝑡
Ψ 𝜏 − ሶ𝜃𝑦 𝜏 𝑑𝜏

23

24

Sistemas Embutidos 2020/21

Concurrent Models of Computation 13

d c
c]

[

Observation: Any Composition is a Feedback
Composition

SE 2020/21 - Concurrent Models of Comp. - pbrandao25

The behaviour of the system is

a “fixed point.”

s S N

If every actor is a function, then the

semantics of the overall system is the

least s SN such that F(s) = s

d c
c]

[

Fixed Point Semantics

SE 2020/21 - Concurrent Models of Comp. - pbrandao26

s S N

Consider an

interconnection of actors

Abstract actors Abstract signals

Reorganize We seek an s SN that

satisfies F(s) = s.

Such an s is called a fixed

point.

We would like the fixed point

to exist and be unique. And

we would like a constructive

procedure to find it.

It is the behaviour of the

system.

25

26

Sistemas Embutidos 2020/21

Concurrent Models of Computation 14

d c
c]

[

Data Types

■ As with any connection, we require compatible data types:

𝑉𝑦 ⊆ 𝑉𝑥

■ Then the signal on the feedback loop is a function

𝑠: ℕ → 𝑉𝑦⋃ 𝑎𝑏𝑠𝑒𝑛𝑡

■ Then we seek 𝑠 such that

𝐹 𝑠 = 𝑠

■ Where 𝐹 is the actor function, which for determinate systems has

form

𝐹: (ℕ → 𝑉𝑥 ⋃ 𝑎𝑏𝑠𝑒𝑛𝑡) → (ℕ → 𝑉𝑦 ⋃ 𝑎𝑏𝑠𝑒𝑛𝑡)

SE 2020/21 - Concurrent Models of Comp. - pbrandao27

x y

s

d c
c]

[

Firing Functions

SE 2020/21 - Concurrent Models of Comp. - pbrandao28

x y

s

■ With synchronous composition of determinate state machines, we can

break this down by reaction. At the n-th reaction (can be a tick of a

clock), there is a (state-dependent) function

𝑓(𝑛): 𝑉𝑥 ⋃ 𝑎𝑏𝑠𝑒𝑛𝑡 → 𝑉𝑦 ⋃ 𝑎𝑏𝑠𝑒𝑛𝑡

■ Such that

𝑠 𝑛 = (𝑓 𝑛)(𝑠 𝑛)

■ This too is a fixed point

27

28

Sistemas Embutidos 2020/21

Concurrent Models of Computation 15

d c
c]

[

Well-Formed Feedback

■ At the nth reaction we seek 𝑠 𝑛 ∈ 𝑉𝑦 ∪ 𝑎𝑏𝑠𝑒𝑛𝑡 such that

𝑠 𝑛 = 𝑓 𝑛 𝑠 𝑛

■ There are two potential problems:

1. It does not exist

2. It is not unique

■ In either case, the system is ill formed.

– Otherwise, it is well formed

■ if a state is not reachable, it is irrelevant to determining whether ill or

well formed

SE 2020/21 - Concurrent Models of Comp. - pbrandao29

d c
c]

[

Well-Formed Example

■ In state s1, we get the unique fixed point s n = 𝑎𝑏𝑠𝑒𝑛𝑡

■ In state s2, we get the unique fixed point s n = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

■ Therefore, s alternates between absent and present.

SE 2020/21 - Concurrent Models of Comp. - pbrandao30

29

30

Sistemas Embutidos 2020/21

Concurrent Models of Computation 16

d c
c]

[

Ill-Formed Example 1 (Existence)

■ In state s1, we get the unique s n = 𝑎𝑏𝑠𝑒𝑛𝑡

■ In state s2, there is no fixed point

■ Since state s2 is reachable, this composition is ill formed.

SE 2020/21 - Concurrent Models of Comp. - pbrandao31

d c
c]

[

Ill-Formed Example 2 (Uniqueness)

■ In s1, both s n = 𝑎𝑏𝑠𝑒𝑛𝑡 and s n = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 are fixed points

■ In state s2, we get the unique s n = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

■ Since state s1 is reachable, this composition is ill formed.

SE 2020/21 - Concurrent Models of Comp. - pbrandao32

31

32

Sistemas Embutidos 2020/21

Concurrent Models of Computation 17

d c
c]

[

Constructive Semantics: Single Signal

1. Start with s(n) unknown.

2. Determine as much as you can about fi(s(n)), where fi is the firing

function in state i.

3. Repeat step 2 until all values in s(n):

– become known (whether they are present and what their values are),

or

– until no more progress can be made.

4. If unknown values remain, then reject the model.

SE 2020/21 - Concurrent Models of Comp. - pbrandao

A state machine for which the procedure works

in all reachable states is said to be

constructive

33

d c
c]

[

Non-Constructive Well-Formed State Machine

■ In state s1, if the input is unknown, we cannot immediately tell what

the output will be. We must try all the possible values for the input to

determine that in fact s n = 𝑎𝑏𝑠𝑒𝑛𝑡 for all n.

SE 2020/21 - Concurrent Models of Comp. - pbrandao34

33

34

Sistemas Embutidos 2020/21

Concurrent Models of Computation 18

d c
c]

[

Constructive Well-Formed State Machine

■ In state s1, the machine may not produce an output. Therefore, we

know the output is absent, even though the input is unknown.

■ In state s2 , the machine must produce an output, so the output is

present.

SE 2020/21 - Concurrent Models of Comp. - pbrandao35

d c
c]

[

Must / May Analysis

■ In state s1, we can immediately determine that the machine may not

produce an output ➔output is absent, even though the input is unknown.

– If the output is absent, ➔ the input is absent → procedure concludes.

■ In state s2, we can immediately determine that the machine must produce

an output, ➔ output is present.

SE 2020/21 - Concurrent Models of Comp. - pbrandao36

35

36

Sistemas Embutidos 2020/21

Concurrent Models of Computation 19

d c
c]

[

Constructive Semantics: Multiple Signals

1. Start with s1(n), s2(n),…, sN(n), unknown.

2. Determine as much as you can about fi(s1(n), s2(n),…, sN(n)), where

fi is the firing function in state i.

3. Repeat step 2 until all values in s1(n), s2(n),…, sN(n) become known

(whether they are present and what their values are), or until no

more progress can be made.

4. If unknown values remain, then reject the model.

SE 2020/21 - Concurrent Models of Comp. - pbrandao37

A state machine for which the procedure works

in all reachable states is said to be

constructive

d c
c]

[

Constructive Semantics: Multiple Actors

■ Procedure is the same.

SE 2020/21 - Concurrent Models of Comp. - pbrandao38

37

38

Sistemas Embutidos 2020/21

Concurrent Models of Computation 20

d c
c]

[

Constructive Semantics: Arbitrary Structure

■ Procedure is the same.

■ A state machine language with constructive semantics will reject all

compositions that in any iteration fail to make all signals known.

■ Such a language rejects some well-formed compositions.

SE 2020/21 - Concurrent Models of Comp. - pbrandao39

d c
c]

[

Some conclusions:

■ The emphasis of synchronous composition, in contrast with threads, is

on determinate and analysable concurrency.

■ Although there are subtleties with synchronous programs, all

constructive synchronous programs have a unique and well-defined

meaning.

■ Automated tools can systematically explore all possible behaviours.

This is not possible in general with threads.

SE 2020/21 - Concurrent Models of Comp. - pbrandao40

39

40

Sistemas Embutidos 2020/21

Concurrent Models of Computation 21

d c
c]

[

Summary

■ Structure of models

– Models of computation

■ Synchronous-reactive models

– Fixed point semantics

SE 2020/21 - Concurrent Models of Comp. - pbrandao41

41

