

Model Based Design

What is Modelling?

P	\mathbf{N}
X	X
Y	$\mathbf{\tilde{v}}$

Developing insight about a system, process, or artefact through imitation.

 \blacksquare A model is the artefact that imitates the system, process, or artefact of interest.

■A mathematical model is in the form of a set of definitions and mathematical formulas/objects.

SE 2020/21 - Design Model - pbrandao

[dcc]

PORTO

5

The Kopetz Principle

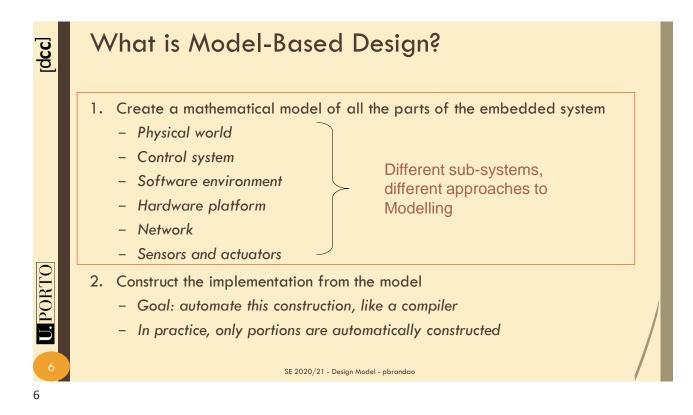
Prof. Dr. Hermann Kopetz

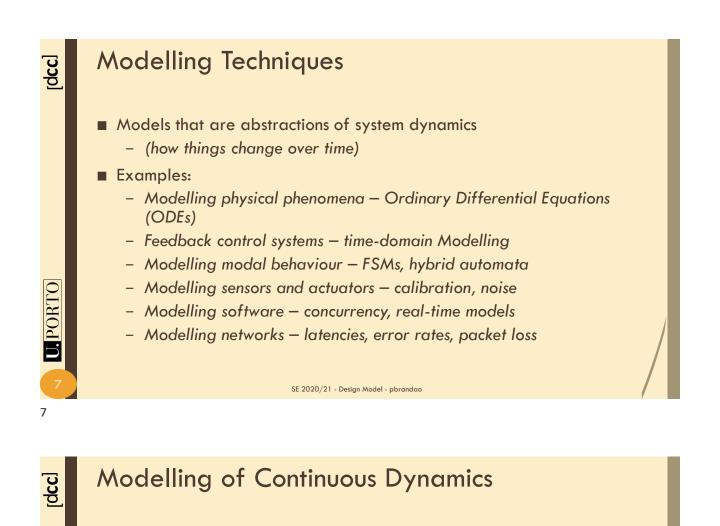
■Many (predictive) properties that we assert about systems (determinism, timeliness, reliability, safety) are in fact not properties of an *implemented* system, but rather properties of a *model* of the system.

We can make definitive statements about *models*, from which we can *infer* properties of system realizations. The validity of this inference depends on *model fidelity*, which is always approximate.

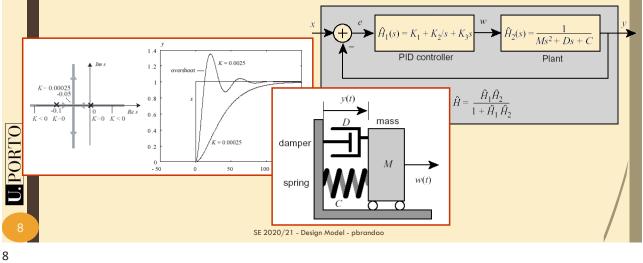
(paraphrased)

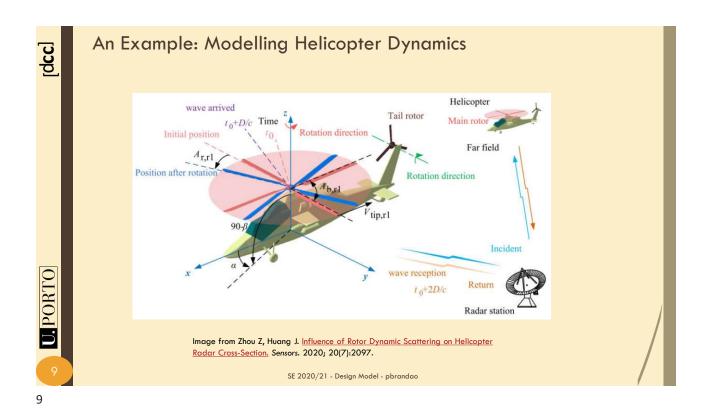
SE 2020/21 - Design Model - pbrandao

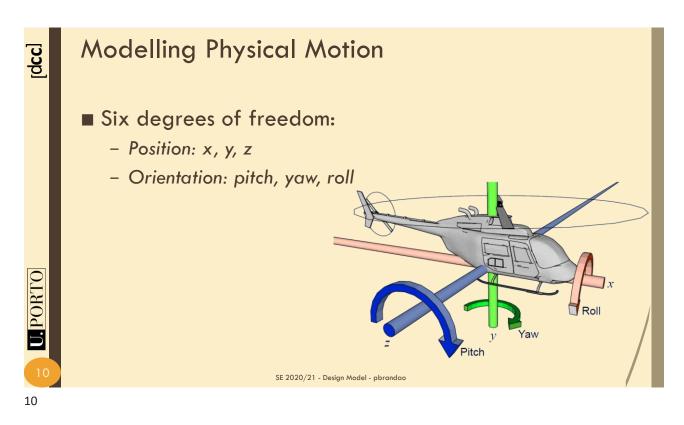


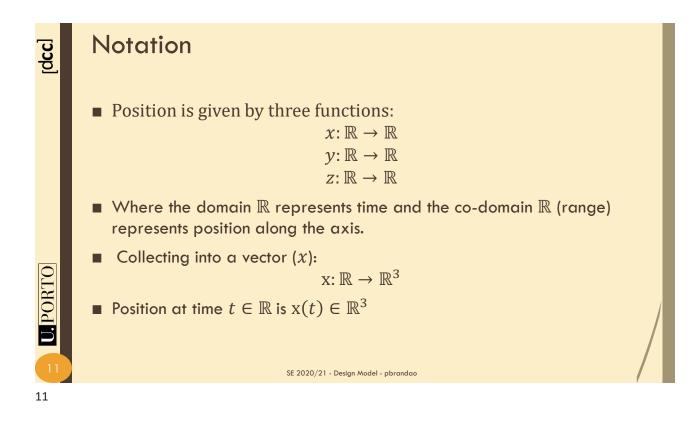


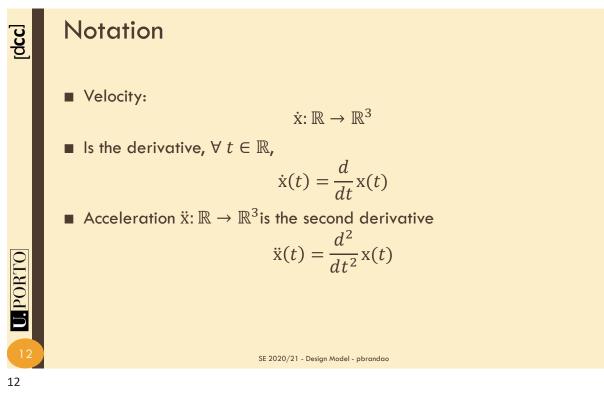
 Ordinary differential equations, Laplace transforms, feedback control systems, stability analysis, robustness analysis, ...

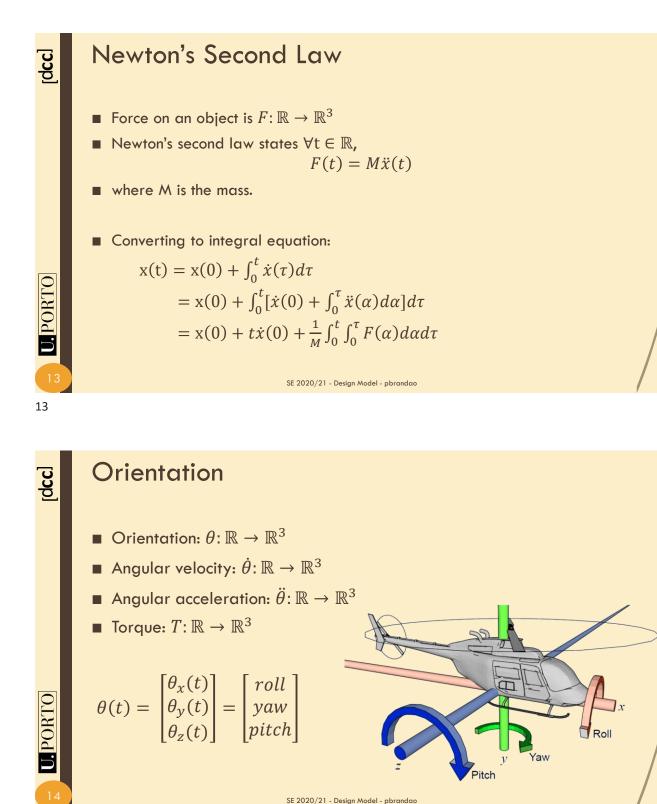




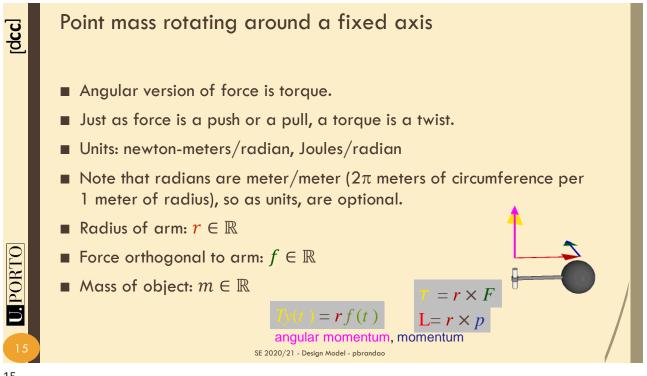




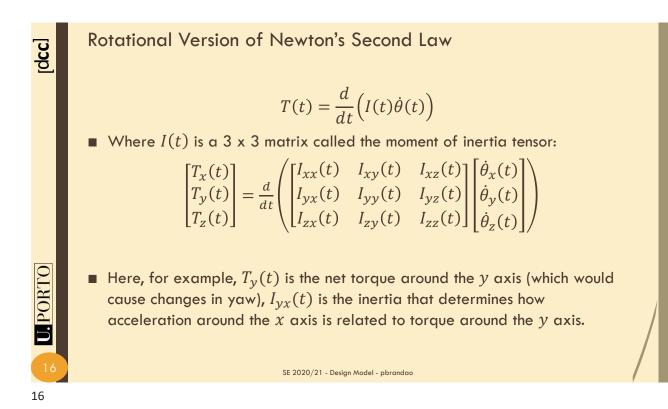


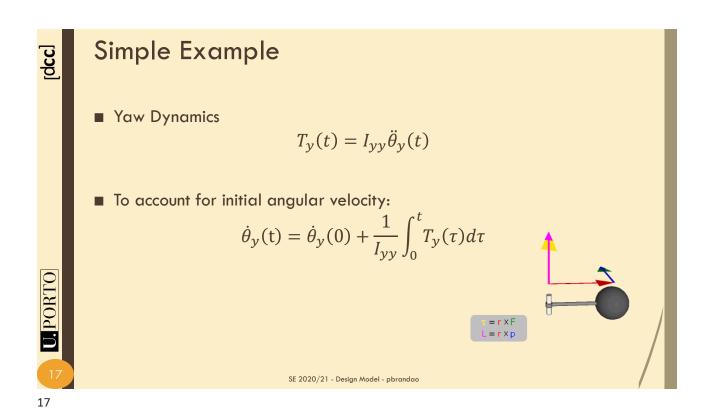


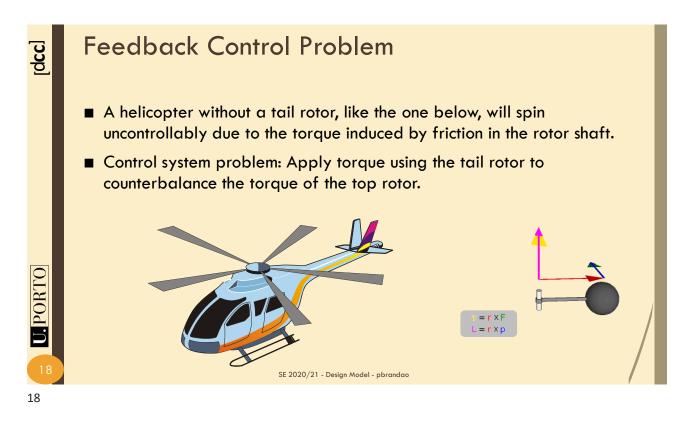
14

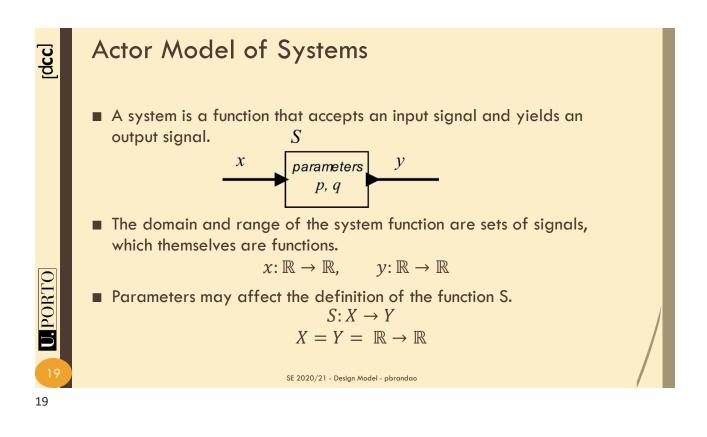


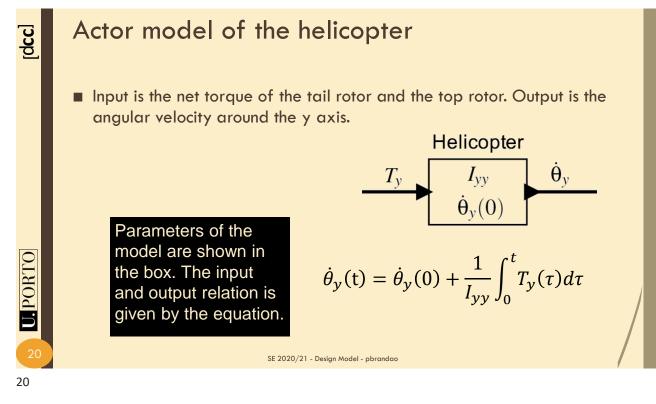
15

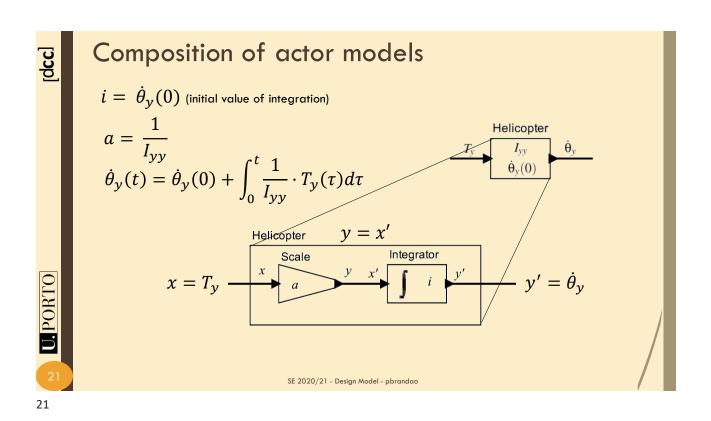


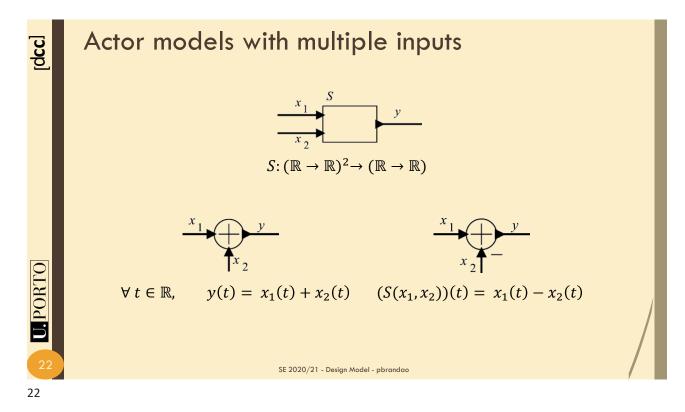


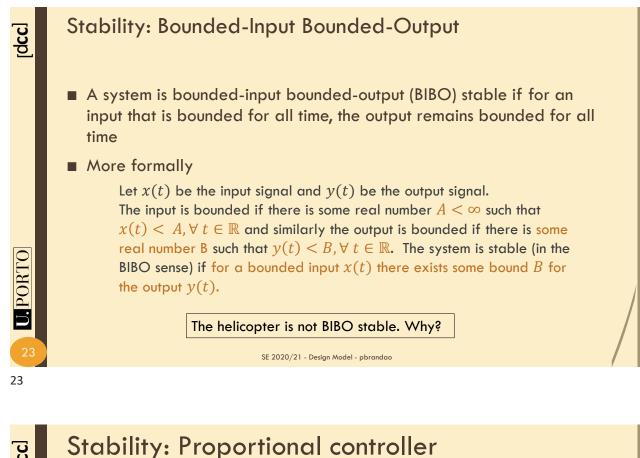


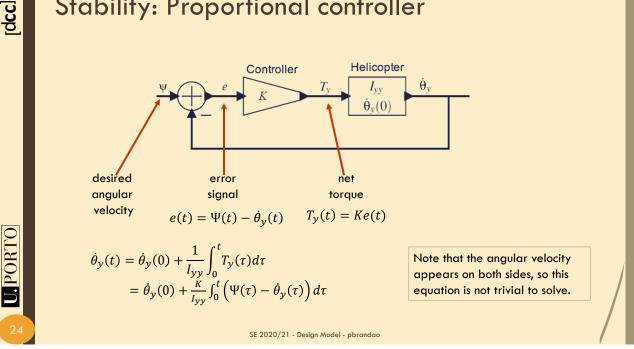




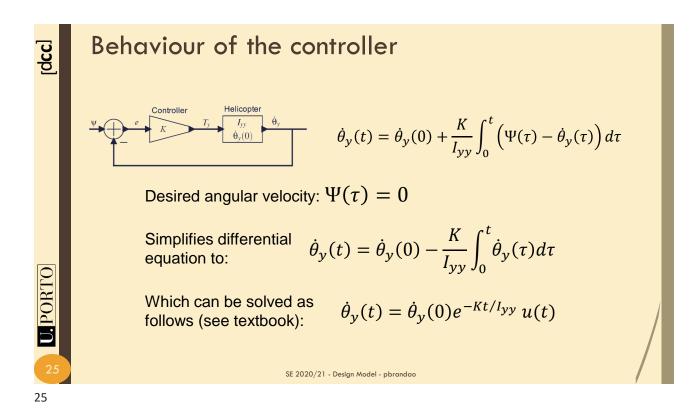


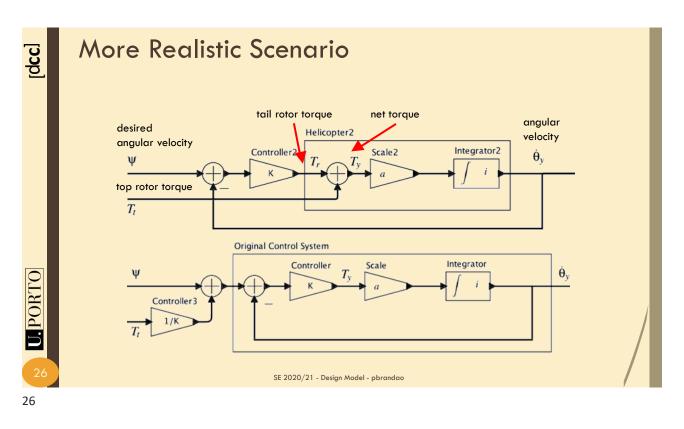




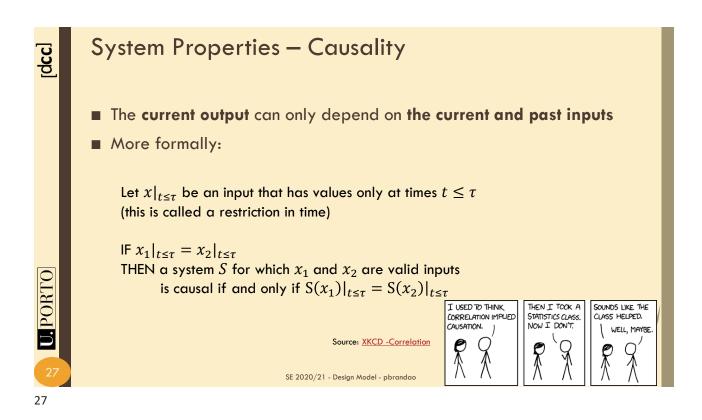


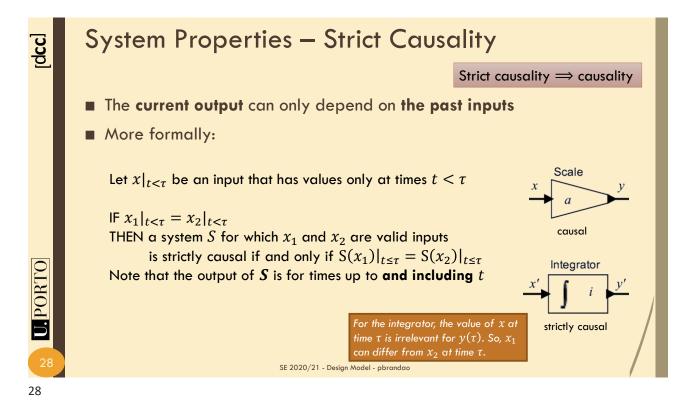
24

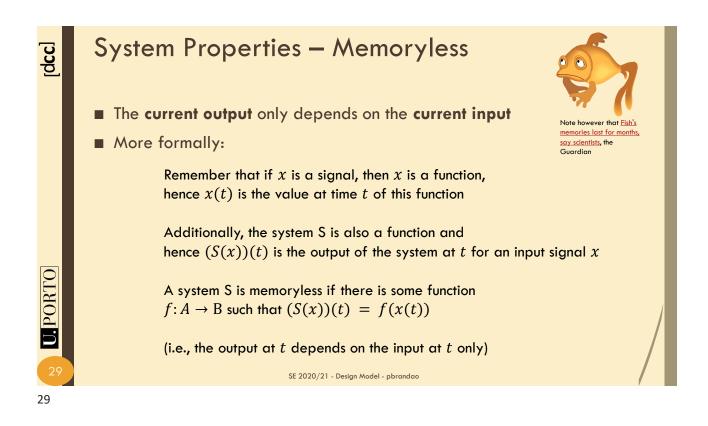


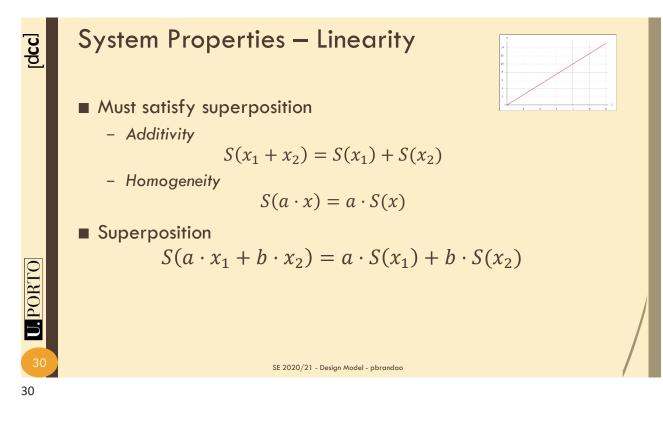


Model Based Design









Is the helicopter system linear?

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) + \int_{0}^{t} \frac{1}{I_{yy}} \cdot T_{y}(\tau) d\tau$$
$$S(T_{y}) = \dot{\theta}_{y}(0) + \int_{0}^{t} \frac{1}{I_{yy}} \cdot T_{y}(\tau) d\tau$$

$$S(a \cdot T_y) = \dot{\theta}_y(0) + \int_0^t \frac{1}{I_{yy}} \cdot a \cdot T_y(\tau) d\tau$$
$$a \cdot S(T_y) = a \cdot \left[\dot{\theta}_y(0) + \int_0^t \frac{1}{I_{yy}} \cdot T_y(\tau) d\tau \right]$$
$$S(a \cdot T_y) \neq a \cdot S(T_y)$$

SE 2020/21 - Design Model - pbrandao

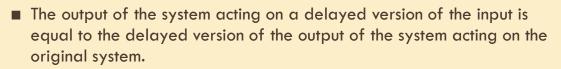
31

[dcc]

J PORTO

32

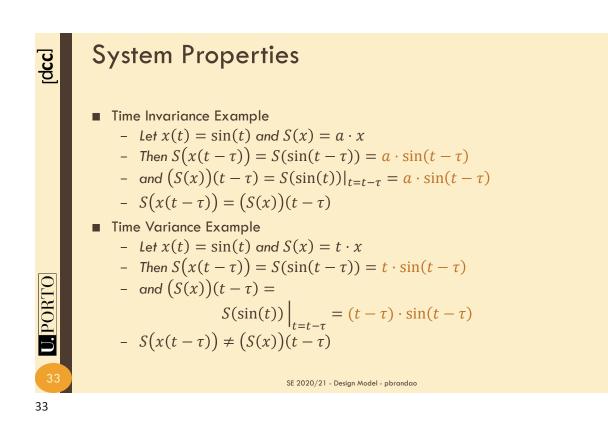
System Properties – Time-Invariance

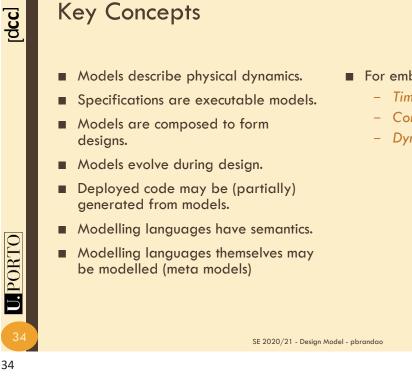


More formally

Let D_{τ} be an actor (system) that delays a signal such that $D_{\tau}(x(t)) = x(t-\tau)$

Then a system S is time invariant if and only if $S(D_{\tau}(x)) = D_{\tau}(S(x))$





- For embedded systems, this is about
 - Time
 - Concurrency
 - **Dynamics**

